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Note 

A Fourth-Order Poisson Solver 

1. INTRODUCTION 

Consider the Poisson equation 

4,x + $YY = PY O<x<a, O<y<b. (1) 

When this equation is solved by finite differences, the most commonly used approx- 
imation is the five-point formula: 

#i.j+l + #i,j-1 + $i+I,j+ ~i-l,j-4~i,.j=h2pi.j. (2) 

This approximation has a truncation error of order h2. An approximation of order h4 
can also be used to solve Eq. (1): 

4[#i,j+l + #i,,/-1 + 4i+l,j + $i-l,jl 
+ #i+l,j+l + #i+l,j-I + #i-l.j+l + @i-l,j-1 -204i,j 

= 0.5h2 [pi+ I , j  + Pi- 1.j + Pi,j+ 1 + Pi,j- 1 + @i,jl* (3) 

This nine-point formula, called a Mehrstellenverfahren by Collatz [3], has been 
known for almost 30 years (see also (51). In recent years, several authors have 
derived high-order finite difference approximations for various partial differential 
equations, e.g., Hodie schemes [ 1, 71, O.C.I. methods [2] and SCHOS schemes 
[4,8]. All of these approximations reduce to Eq. (3) for the case of the Poisson 
equation. 

In this paper, we compare the accuracy and computational efficiency of the above 
difference approximations for a test problem. We also consider methods of approx- 
imating the values of +/ax and a#/@ once the solution 4 has been obtained. It is 
found that the standard central differences yield second-order-accurate values, 
irrespective of whether Eq. (2) or Eq. (3) is used to solve the Poisson equation. Some 
new difference approximations for computing the numerical values of these partial 
derivatives are introduced. These approximations are found to yield O(h4) accuracy, 
when used in conjunction with the nine-point formula (3). 
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TABLE I 

Average CPU Times for Direct Solver (set) 

Nine-point Five-point 

N FACTOR SOLVE FACTOR SOLVE 

16 1.63 0.47 1.60 0.20 
32 30.98 2.68 30.24 1.56 

2. COMPUTATIONAL EFFICIENCY OF POISSON SOLVERS 

We examine the computational efficiency of the two Poisson solvers on the 
following problem: 

#,, + #,, = sin(nxxk,/8) sin(&/8). 

The exact solution is given by 

(4) 

4 = -[(7~/8)~(k: + k;)]- ’ sin(rcxk,/8) sin(7rJk,/8). (5) 

This problem arises in the simulation of certain semi-bounded plasmas where both 
the electric potential 4 and the electric fields grad 4 are to be computed. This problem 
was considered by Knorr et al. [6] to test their fourth-order Poisson solver. 

We solved Eq. (4) in the square [0, 161 x [O, 161 using a uniform mesh (h = 16/N) 
and approximated the Poisson equation at each interior mesh point by Eq. (2) or 
Eq. (3). The resulting algebraic systems were solved using a direct solver (LEQTlB) 
from I.M.S.L.; double precision arithmetic on IBM 4341. The average CPU times for 
factorizing the coefficient matrix (FACTOR) and solving the algebraic system 
(SOLVE) are given in Table I-the FACTOR times are almost identical with both 
difference approximations. The storage requirements of the band solver are almost 
identical for both formulas (Table II). 

The maximum errors for $ are compared in Table III for a sample 32 x 32 mesh. 
As expected, Eq. (3) yields much better accuracy. 

TABLE II 

Storage Requirements of the Direct Solver 
(Number of Array Elements To Be Stored) 

N Nine-point Five-point 

16 11,475 10,800 
32 95,139 92,256 
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TABLE III 

Maximum Errors for Q (N= 32) 

k 3 k, 

Five-point Nine-point 
formula formula 

1, 1 0.1044(-l)” 0.1336(-4) 
2, 1 0.1425(-l) 0.5 150(-4) 
232 0.1050(-l) 0.5304(-4) 
3, 1 0.1734(-l) 0.2370(-3) 
3, 2 0.1212(-l) 0.5621(-5) 
393 0.1060(-l) 0.1178(-3) 

“0.1044(-1)=0.1044X 10 ‘. 

3. APPROXIMATIONS OF THE FIRST-ORDER DERIVATIVES 

Once the numerical solution of the Poisson equation has been obtained, one may 
compute the values of the first-order derivatives using the standard central dif- 
ferences: 

Tables IV and V contain the maximum errors in the computed values of grad 4 in 
the case of the live-point and the nine-point approximations. When the mesh is 
relined from 16 x 16 to 32 x 32, the errors decay by a factor of 4, thereby indicating 
O(h2) convergence in each case. This indicates that the O(h4) accuracy of the nine- 
point formula does not lead to comparably accurate values of grad 4. 

We now examine a new finite difference approximation for grad #, which can be 
used in conjunction with the nine-point formula: 

(a~lax>i,j=(~i+,,j-~i-l,j>/3h+(~i,,,j+I+~i+I.j~I-~i-l,j+I 

-~i~l,j-1)/12h-h(pi+,.j-Pi~l,j)/12; PI 

(a41aY)i,j=(4i,j+l -4i,j-l)/3h + ($i+l,j+l +Qi-l,j+l -$i+l.j-1 

-4i-l,j-1)/12h-h(pi,j+,-pi,j~,)/12’ (7b) 

The above approximations approximate grad 4 with O(h4) accuracy. These approx- 
imations were obtained during development of high-order SCHOS approximations for 
general partial differential equations [4, 81. Brief derivation of Eq. (7) is given in the 
Appendix. 
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TABLE IV 

Maximum Errors for grad 4 (Five-Point Formula) Central Differences 

4. k, 

wax ad/+> 

N= 16 N=32 N= 16 N=32 

1, 1 0.1640(-l) 0.4093(-2) 0.1640(-l) 0.4093(-2) 
2, 1 0.6049(-l) 0.1507(-l) 0.9226(-2) 0.2295(-2) 
2, 2 0.3307(-l) 0.8202(-2) 0.3307(-l) 0.8202(-2) 
3, 1 0.9778(-l) 0.2415(-l) 0.2128(-l) 0.5 133(-2) 
3,2 0.8014(-l) 0.1993(-l) 0.3335(-2) 0.7154(-3) 
3, 3 0.5026(-l) 0.1234(-l) 0.5026(-l) 0.1234(-l) 

TABLE V 

Maximum Errors for grad 4 (Nine-Point Formula) Central Differences 

k, > k, 

wax a#y 

N= 16 N=32 N= 16 N=32 

1, 1 0.3255(-l) 0.8171(-2) 0.3255(-l) 0.8171(-2) 
2, 1 0.1009(0) 0.2594(-l) 0,1266(-l) 0.3246(-2) 
-7.,2 0.6404(-l) 0.1628(-l) 0.6404(-l) 0.1628(-l) 
3, 1 0.1611(O) 0.4316(-l) 0.4966(-2) 0.1541(-2) 
3, 2 0.1266(O) 0.3339(-l) 0.3890(-l) 0.9988(-2) 
3, 3 0.9317(-l) 0.2425(-l) 0.9317(-l) 0.2425(-l) 

TABLE VI 

Maximum Errors for grad ( (Nine-Point Formula) SCHOS Differences 

k, 9 k, 
wax wa.l 

N= 16 N=32 N= 16 N=32 

1, 1 0.2546(-3) 0.1584(-4) 0.2546(-3) 0.1584(-4) 
2, 1 0.6365(-2) 0.4070(-3) 0.2632(-2) 0.1712(-3) 
2, 2 0.2092(-2) 0.1273(-3) 0.2092(-2) 0.1273(-3) 
3, 1 0.2247(-l) 0.1474(-2) 0.7437(-2) 0.4981(-3) 
332 0.1763(-l) 0.1158(-2) 0.6344(-2) 0.4556(-3) 
3, 3 0.7352(-2) 0.4545(-3) 0.7352(-2) 0.4345(-3) 
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When the above expressions were used to compute grad 4 from the computed 
solutions of the nine-point approximation (3), the errors exhibited O(h4) convergence 
(see Table VI). 

It is clear that the errors in Table VI are substantially smaller than those in 
Tables IV and V. These errors are comparable or better than those obtained by 
Knorr et al. [ 6). The difference approximations presented here are simpler and more 
straightforward. 

APPENDIX 

The single-cell high-order schemes of 14, 81 are derived on a nine-point square cell 
with center (xi, yj) and sides of length 2h. The other eight mesh points on the 
boundary of the square are (xi f h, yj), (xi, ~7 f h) and (xi f h, yj f h). Taking the 
local origin at (xi, yj), the functions 4(x, y) and p(x, y) are expressed locally by the 
power series 

#(X3 Y) = x a,,(x - xi)‘(Y - Yj>“, PCx3 Y) = x cfm(x - xi)L(Y - Vj)“, 

xi - h <x < xi + h, yj - h < y < yj + h. (A.11 

Substituting (A.l) into Eq. (1) and comparing powers of (x -xi)‘(y - y,)“, we 
obtain the following constraints on the unknown coefftcients a,,: 

c tm = (t + 1 - p>(t + 2 -PI at-p+2.m-9 (A4 

+ (VI + 1 - q>(m + 2 - s> af-p,m-qt 2, o<p<t, O<s<m. 

The values of $(x, y) at any point of the single cell can be expressed in terms of 
a,, from (A.l), e.g., 

(A.3) 

#i+l,j+l =#(Xi + h, Yj + h)=a,, + (a,, +a,,)h + (a,, + a,, +a,,)h2 + .... 

Equations (A.2) and (A.3) constitute a system of linear equations for the unknown 
coefficients a,, in (A.l). The solution of this system yields a large class of finite 
difference schemes. The accuracy of a SCHOS scheme depends upon the number of 
equations used from (A.2) and (A.3). 

If only one equation, viz., co0 = 2a,, + 2a02, is used from (A.2), and five equations 
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of the type (A.3) are used, a linear system of order 6 x 6 results. A particular choice 
leads to the following system: 

1 1 0 1 0 0 
1 0 1 0 0 1 
1 -1 0 1 0 0 
1 0 -1 0 0 1 
1 1 1 1 1 1 
0 0 0 2 0 2 II 

a00 

a,oh 

ao,h 

a2,hz 

a,# 

ao2h2. 

= 

4i+l,j 

4i,j+ I 

tii-l,j 1 $i,j-I * 
(A.41 

#i+ I,j+ 1 

coo h2 

The solution of this system gives a,, in terms of coo, h and Qii: 

a OO=".25($i+l,j + #i- 1.j + 4i,j+ 1 + @i,j- I- h*Coo), 

~loh=0.5(~i+l,j-$i-l,j), ~01 h = 0.5(#i.j+ 1 - #i.j- I>* 

From (A. l), 

a 00 = $Yxi, Yjh cOO =PCxi3 Yjh alO = a41ax(xi3 Yj> 

and 

a 01 =a#IaY(xi, Yj), 

(A.5) 

(‘4.6) 

(A.7) 

and Eqs. (A.5), (A.6) represent the five-point formula (2) and the central difference 
formulas (6), respectively. 

For the fourth-order-accurate formulas, we need six constraints corresponding to 
Coo 3 Cl09 co19 c207 Cl,, c20 from (A.2) and nine equations of the type (A.3). This yields 
a 15 X 15 linear algebraic system similar to (A.4). On solution we obtain the 
following SCHOS approximations of fourth order: 

a OO="*2[4i+ l,j + #i-l,j + 4i,j+l + $i,j-ll 

+0*05[#i+l,j+l +#i+l,j-1 +#i-l,j+l +#i-l.j-ll 

- 0.3cooh2 - O.O5(c,, + co2) h4; (A.8) 

aloh=;[#i+l,j- 4i-l,jl + 2[#i+*.j+l -#iLl,j+l 

-#i-l,j-1 + #i+l,j-Il -Cloh/6; (A.9) 
a01 h = f [#i,j+ 1 -4i,j-11 + g[#i+l,j+l +#i-l,j+l 

-4i-l.j-1 -#i+l,j-11 -colh/6* (A. 10) 

From (A. l), 

clO = aP/ax(xi> Yj>l cOl = aPlaY(xi3 Yj>, 

c*o + co* = 4 La2Plax2 + a2P/aY2](xiY Yj) 
(A.1 1) 
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and the SCHOS approximation for the Poisson equation (1) is obtained from (A.8) 
as 

4[$i+l,j +#i&l,j+4i,j+l +#i,j-11 

+ #i+l,j+l + $iCl.j+l + #iLl.j-1 t @i+l,j-1 -20#ij 

= 6h2pij t ;h4(c3*p/8x2 t r3’p/$~*)~~. (A.12) 

When the second term on the right-hand side of (A. 12) is replaced by the difference 
approximation $h’[Pi,j+ 1 t Pi,j- 1 t Pi+ 1-j + pip ,,j - 4p,], we obtain the Mehrstellen 
formula in Eq. (3). The difference approximations (7) for +/ax and +/ay are 
similarly obtained from (A.9), (A. 10). 

It is easy to show that these difference approximations have truncation error of 
order h4. 
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